21 research outputs found

    Inducing syntactic cut-elimination for indexed nested sequents

    Full text link
    The key to the proof-theoretic study of a logic is a proof calculus with a subformula property. Many different proof formalisms have been introduced (e.g. sequent, nested sequent, labelled sequent formalisms) in order to provide such calculi for the many logics of interest. The nested sequent formalism was recently generalised to indexed nested sequents in order to yield proof calculi with the subformula property for extensions of the modal logic K by (Lemmon-Scott) Geach axioms. The proofs of completeness and cut-elimination therein were semantic and intricate. Here we show that derivations in the labelled sequent formalism whose sequents are `almost treelike' correspond exactly to indexed nested sequents. This correspondence is exploited to induce syntactic proofs for indexed nested sequent calculi making use of the elegant proofs that exist for the labelled sequent calculi. A larger goal of this work is to demonstrate how specialising existing proof-theoretic transformations alleviate the need for independent proofs in each formalism. Such coercion can also be used to induce new cutfree calculi. We employ this to present the first indexed nested sequent calculi for intermediate logics.Comment: This is an extended version of the conference paper [20

    Cut-restriction: from cuts to analytic cuts

    Full text link
    Cut-elimination is the bedrock of proof theory with a multitude of applications from computational interpretations to proof analysis. It is also the starting point for important meta-theoretical investigations including decidability, complexity, disjunction property, and interpolation. Unfortunately cut-elimination does not hold for the sequent calculi of most non-classical logics. It is well-known that the key to applications is the subformula property (a typical consequence of cut-elimination) rather than cut-elimination itself. With this in mind we introduce cut-restriction, a procedure to restrict arbitrary cuts to analytic cuts (when elimination is not possible). The algorithm applies to all sequent calculi satisfying language-independent and simple-to-check conditions, and it is obtained by adapting age-old cut-elimination. Our work encompasses existing results in a uniform way, and establishes novel analytic subformula properties.Comment: 13 pages, conference preprin

    Bounded-analytic sequent calculi and embeddings for hypersequent logics

    Get PDF
    A sequent calculus with the subformula property has long been recognised as a highly favourable starting point for the proof theoretic investigation of a logic. However, most logics of interest cannot be presented using a sequent calculus with the subformula property. In response, many formalisms more intricate than the sequent calculus have been formulated. In this work we identify an alternative: retain the sequent calculus but generalise the subformula property to permit specific axiom substitutions and their subformulas. Our investigation leads to a classification of generalised subformula properties and is applied to infinitely many substructural, intermediate, and modal logics (specifically: those with a cut-free hypersequent calculus). We also develop a complementary perspective on the generalised subformula properties in terms of logical embeddings. This yields new complexity upper bounds for contractive-mingle substructural logics and situates isolated results on the so-called simple substitution property within a general theory

    Cut-restriction: from cuts to analytic cuts

    Get PDF
    Cut-elimination is the bedrock of proof theory with a multitude of applications from computational interpretations to proof analysis. It is also the starting point for important meta-theoretical investigations into decidability, complexity, disjunction property, interpolation, and more. Unfortunately cut-elimination does not hold for the sequent calculi of most non-classical logics. It is well-known that the key to applications is the subformula property (a typical consequence of cut-elimination) rather than cut-elimination itself. With this in mind, we introduce cut-restriction, a procedure to restrict arbitrary cuts to analytic cuts (when elimination is not possible). The algorithm applies to all sequent calculi satisfying language-independent and simple-to-check conditions, and it is obtained by adapting age-old cut-elimination. Our work encompasses existing results in a uniform way, subsumes Gentzen’s cut-elimination, and establishes new analytic cut properties

    Decidability and Complexity in Weakening and Contraction Hypersequent Substructural Logics

    Get PDF
    We establish decidability for the infinitely many axiomatic extensions of the commutative Full Lambek logic with weakening FLew (i.e. IMALLW) that have a cut-free hypersequent proof calculus. Specifically: every analytic structural rule exten- sion of HFLew. Decidability for the corresponding extensions of its contraction counterpart FLec was established recently but their computational complexity was left unanswered. In the second part of this paper, we introduce just enough on length functions for well-quasi-orderings and the fast-growing complexity classes to obtain complexity upper bounds for both the weakening and contraction extensions. A specific instance of this result yields the first complexity bound for the prominent fuzzy logic MTL (monoidal t-norm based logic) providing an answer to a long- standing open problem

    Display to Labeled Proofs and Back Again for Tense Logics

    Get PDF
    We introduce translations between display calculus proofs and labeled calculus proofs in the context of tense logics. First, we show that every derivation in the display calculus for the minimal tense logic Kt extended with general path axioms can be effectively transformed into a derivation in the corresponding labeled calculus. Concerning the converse translation, we show that for Kt extended with path axioms, every derivation in the corresponding labeled calculus can be put into a special form that is translatable to a derivation in the associated display calculus. A key insight in this converse translation is a canonical representation of display sequents as labeled polytrees. Labeled polytrees, which represent equivalence classes of display sequents modulo display postulates, also shed light on related correspondence results for tense logics

    Valentini's cut-elimination for provability logic resolved

    No full text
    Valentini (1983) has presented a proof of cut-elimination for provability logic GL for a sequent calculus using sequents built from sets as opposed to multisets, thus avoiding an explicit contraction rule. From a formal point of view, it is more syntactic and satisfying to explicitly identify the applications of the contraction rule that are 'hidden' in proofs of cut-elimination for such sequent calculi. There is often an underlying assumption that the move to a proof of cut-elimination for sequents built from multisets is straightforward. Recently, however, it has been claimed that Valentini's arguments to eliminate cut do not terminate when applied to a multiset formulation of the calculus with an explicit rule of contraction. The claim has led to much confusion and various authors have sought new proofs of cut-elimination for GL in a multiset setting. Here we refute this claim by placing Valentini's arguments in a formal setting and proving cut-elimination for sequents built from multisets. The use of sequents built from multisets enables us to accurately account for the interplay between the weakening and contraction rules. Furthermore, Valentini's original proof relies on a novel induction parameter called width which is computed 'globally'. It is difficult to verify the correctness of his induction argument based on width. In our formulation however, verification of the induction argument is straightforward. Finally, the multiset setting also introduces a new complication in the case of contractions above cut when the cut-formula is boxed. We deal with this using a new transformation based on Valentini's original arguments. Finally, we discuss the possibility of adapting this cut-elimination procedure to other logics axiomatizable by formulae of a syntactically similar form to the GL axiom

    Valentini's cut-elimination for provability logic resolved

    No full text
    In 1983, Valentini presented a syntactic proof of cut-elimination for a sequent calculus GLSV for the provability logic GL where we have added the subscript V for "Valentini". The sequents in GLSV were built from sets, as opposed to multisets, thus avoiding an explicit contraction rule. From a syntactic point of view, it is more satisfying and formal to explicitly identify the applications of the contraction rule that are 'hidden' in these set-based proofs of cut-elimination. There is often an underlying assumption that the move to a proof of cut-elimination for sequents built from multisets is easy. Recently, however, it has been claimed that Valentini's arguments to eliminate cut do not terminate when applied to a multiset formulation of GLSV with an explicit rule of contraction. The claim has led to much confusion and various authors have sought new proofs of cut-elimination for GL in a multiset setting. Here we refute this claim by placing Valentini's arguments in a formal setting and proving cut-elimination for sequents built from multisets. The formal setting is particularly important for sequents built from multisets, in order to accurately account for the interplay between the weakening and contraction rules. Furthermore, Valentini's original proof relies on a novel induction parameter called "width" which is computed 'globally'. It is difficult to verify the correctness of his induction argument based on "width". In our formulation however, verification of the induction argument is straightforward. Finally, the multiset setting also introduces a new complication in the the case of contractions above cut when the cut-formula is boxed. We deal with this using a new transformation based on Valentini's original arguments. Finally, we show that the algorithm purporting to show the non-termination of Valentini's arguments is not a faithful representation of the original arguments, but is instead a transformation already known to be insufficient

    Cut-elimination for Weak Grzegorczyk Logic Go

    No full text
    We present a syntactic proof of cut-elimination for weak Grzegorczyk logic Go. The logic has a syntactically similar axiomatisation to Gödel-Löb logic GL (provability logic) and Grzegorczyk's logic Grz. Semantically, GL can be viewed as the irreflexiv
    corecore